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Abstract
We use Lie algebraic techniques to obtain exact solutions of the effective
mass Schrödinger equation. In particular we use the su(1, 1) algebra, both
as a spectrum generating algebra and as a potential algebra, to obtain exact
solutions of effective mass Schrödinger equations corresponding to a number
of potentials. We also discuss the construction of isospectral Hamiltonians for
which both the mass and the potential are different.

PACS numbers: 02.20.Sv, 03.65.−w

1. Introduction

Over the years the Schrödinger equation has been studied extensively regarding its exact
solvability. Many advances have been made in this area by classifying quantum mechanical
potentials according to their symmetry properties, For instance, various algebras which reveal
the underlying symmetry as well as facilitating obtaining the solutions have been found.
Generally the symmetry algebras are of two types—spectrum generating algebras (SGAs) [1]
and potential algebras (PAs) [2]. Using SGAs it is possible to determine the entire spectrum
of a particular potential while in the case of PAs one can obtain a family of potentials having
the same energy.

In contrast to the standard Schrödinger equation, the study of the Schrödinger equation
with a position-dependent effective mass has been the subject of recent interest. Such quantum
systems have been found to be useful in the study of electronic properties of semiconductors [3],
quantum dots [4], liquid crystals [5] etc. Although exact solutions are difficult to obtain
some exactly soluble models of effective mass Schrödinger equations have been found [6–8].
Supersymmetric techniques have also been used in obtaining exact solutions [9, 10]. On the
other hand, Lie algebraic methods have been widely used not only in quantum mechanics [1]
but in other areas too [11, 12]. However, such methods have so far not been used to analyse
effective mass Schrödinger equations. In this article our aim is to examine such equations
from the point of view of their Lie algebraic symmetry. In particular we shall use the su(1, 1)
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algebra, both as an SGA and as a PA to obtain the spectrum of different types of potential.
The organization of the paper is as follows: in section 2 we describe the application of the
su(1, 1) algebra as an SGA to obtain the spectrum of potentials which exhibit the harmonic
oscillator and the singular oscillator spectrum; in section 3 we use the su(1, 1) algebra as a
PA to obtain the spectra of Morse-like and solition-like potentials; in section 4 we discuss
the construction of isospectral Hamiltonians using the su(1, 1) algebra; finally, section 5 is
devoted to a conclusion.

2. su(1, 1) algebra as a spectrum generating algebra

The application of su(1, 1) ∼ so(2, 1) algebra as an SGA has a long history. Different
realizations have been used by various authors to obtain the spectrum of different potentials.
However, before we begin let us first present a brief account of the Schrödinger equation in
the effective mass approximation. We note that there are several ways to define the kinetic
energy when the mass depends on position. A general form of the kinetic energy operator is
given by [13]

T = 1
4 (m

ηpmεpmρ + mρpmεpmη) (1)

with η + ε + ρ = −1. Depending on the choice of the parameters different forms of kinetic
energy operators emerge:

T = 1

4

[
1

m
p2 + p2 1

m

]
(2)

T = 1

2

[
1√
m
p2 1√

m

]
(3)

T = 1

2

[
p

1

m
p

]
. (4)

Here we shall be following Lévy-Leblond [14] and in this case the kinetic energy operator is
given by (4). The corresponding Schrödinger equation reads

d

dx

(
1

2m(x)

dψ(x)

dx

)
+ (E − V (x))ψ(x) = 0. (5)

The wavefunction ψ(x) has to be continuous across the abrupt interface and its derivative
should satisfy the condition

1

m(x)

dψ(x)

dx

∣∣∣∣
−

= 1

m(x)

dψ(x)

dx

∣∣∣∣
+

. (6)

We now proceed to obtain the spectrum of (5) correponding to various potentials. As
mentioned before there are different realizations of the su(1, 1) algebra which are appropriate
for studying different types of problem. For example one may use a realization in which
two of the generators consist of a second-order differential operator only and some scalar
function [15, 16]. Now looking at (5) we find that the Schrödinger equation contains not
only a second-order derivative term but it also a first-order derivative term. Therefore in the
present case it would be advantageous to use a realization of the su(1, 1) generators containing
both second-order and first-order differential operators of a single variable. Thus we consider



A Lie algebraic approach to effective mass Schrödinger equations 3963

generators �i , i = 1, 2, 3, of the form [17]

�1 = u2(x)
d2

dx2
+ v(x)

d

dx
+ w(x) +

φ2(x)

16

�2 = − i

2
φ(x)

(
u(x)

d

dx
+

1

2
p(x)

)
− i

4

�3 = u2(x)
d2

dx2
+ v(x)

d

dx
+ w(x) − φ2(x)

16

(7)

where

u(x) = 1

φ′(x)

p(x) = v(x)

u(x)
− u′(x)

w(x) = p2(x)

4
+
u(x)p′(x)

2
− g2

φ2(x)
.

(8)

In (7) and (8) u(x) (or φ(x)) and v(x) (or p(x)) are arbitrary differentiable functions and
g2 is an arbitrary constant (which will be shown later to be related to the eigenvalues of the
Casimir operator). It can be verified that the generators �i , i = 1, 2, 3, satisfy the su(1, 1)
commutation relations:

[�1, �2] = −i�3, [�2, �3] = i�1, [�3, �1] = i�2. (9)

The above form of the generators is canonical in the sense that they are form invariant with
respect to a variable transformation [17].

Now unitary irreducible representations (UIRs) of the su(1, 1) Lie algebra in which the
compact generator �3 is diagonal can be classified according to the eigenvalues of the Casimir
operatorC = (�2

3 −�2
2 −�2

1) and the compact generator�3. Let us now denote the eigenvalues
of the Casimir operator C and the compact generator �3 by q and N respectively. Then it can
be shown that [15]

q = − 3

16
+
g2

4
= j (j + 1), j = j± = − 1

2 ± 1
2

√
1
4 + g2 (10)

N = E0 + n (11)

where E0 is a real number and n is an integer.
The UIR of the su(1, 1) algebra can be classified into the following categories:

(1) continuous principal series dp(j)
(2) continuous supplementary series ds(j)
(3) discrete series D+(j) and
(4) discrete series D−(j).

Out of these four categories the first two are related to the continuous spectrum while the latter
two are related to the discrete spectrum. For the D−(j) representation j is real and j < 0,
and E0 = j so N = (n + j). Thus in this case the spectrum of �3 is bounded from above.
However, for the D+(j) representation j is a real negative number and E0 = −j so that
N = n− j = −j,−j + 1,−j + 2, . . . . Thus in this case the spectrum of �3 is bounded from
below. Since in this section we shall consider quantum systems with infinite discrete spectrum
bounded from below we shall require only the representation D+(j).
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Let us now consider the operator

� = u2(x)
d2

dx2
+ v(x)

d

dx
+ w(x) − bφ2(x) =

[(
1

2
− 8b

)
�1 +

(
1

2
+ 8b

)
�3

]
, b �= 0.

(12)

Then using the transformations [15]

e−iθ�2�1eiθ�2 = �1 cosh θ + �3sinhθ

e−iθ�2�3eiθ�2 = �1 sinh θ + �3 cosh θ
(13)

the eigenvalue equation for � (which is essentially equation (5))

�ψ(x) = µψ(x) (14)

can be transformed to the eigenvalue equation for the compact generator �3:

�3ψ(x) = µ

4
√
b
ψ(x). (15)

Now from (10) it follows that only one value of j (=j−) is allowed and using (11) we obtain
from (15)

µ = 4
√
b(n − j−) = 4

√
b
(
n + 1

2 + 1
2

√
1
4 + g2

)
. (16)

Next we note that the Schrödinger operator in (5) and the operator � in (12) have similar
forms. On identifying these two operators we obtain

u2(x) = 1

2m(x)
, v(x) = − m′(x)

2m2(x)
(17)

V (x) = bφ2(x) − w(x) (18)

En = 4
√
b
(
n + 1

2 + 1
2

√
1
4 + g2

)
. (19)

It follows therefore that if m(x) is known then u(x) (and hence φ(x)), v(x) and w(x)

become known through the relations (17) and (8). Thus the eigenvalues of the effective mass
Schrödinger equation (5) are given by equation (19). However to obtain specific potentials
it is necessary to specify the mass m(x). Here we choose the mass to be the same as in [9]
(we would like to mention that various other choices of the mass are possible, for instance
exponentially rising mass as in [8]):

m(x) =
(
α + x2

1 + x2

)2

. (20)

Then from (8), (17) and (18) the potential is found to be

V (x) = 2b[x + (α − 1) tan−1 x]2 +
(α − 1)

2(α + x2)4
[3x4 − (2α − 4)x2 − α]

+
g2

2[x + (α − 1) tan−1 x]2
. (21)

Thus in the effective mass formulation, (21) represents the singular oscillator potential (the
singularity being at x = 0) with energy given by (19).

Let us now consider the case g2 = 0. It follows from (10) that in this case both the values
of j are acceptable (since for g2 = 0 both j± < 0) and thus to obtain the complete spectrum
both these values have to be used. In this case the potential is given by

V (x) = 2b[x + (α − 1) tan−1 x]2 +
(α − 1)

2(α + x2)4
[3x4 − (2α − 4)x2 − α] (22)
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while the corresponding energy is given by

En = 2
√
b(n + 1

2 ). (23)

The potential (22) which is the effective mass analogue of the standard harmonic oscillator
was previously obtained in [9] using the shape invariance criteria. It can also be seen that
when α = 1 the potentials (21) and (22) reduce to standard singular and harmonic oscillator
potentials respectively [18].

3. su(1, 1) algebra as a potential algebra

PAs are distinct from SGAs in the sense that in this case we obtain a family of potentials with
the same eigenvalue. This approach was initiated by Alhassid et al [2] and it was used widely
in the case of the standard Schrödinger equation with a constant mass. Here we shall obtain a
number of potentials for which the effective mass Schrödinger equation admits exact solutions.

We note that both the compact generator�3 and the Casimir operatorC are simultaneously
diagonalizable. In the case when su(1, 1) acts as an SGA we identified the Schrödinger operator
with the compact generator �3. In the present case instead of �3 we express the Hamiltonian
as a linear function of the Casimir operator C:

H = − 1
4 − C (24)

where C is given by

C = �2
3 − �2

2 − �2
1 = �2

3 − 1
2 (�+�− + �−�+) (25)

and we have defined �± = (�1 ± i�2). In terms of �± and �3 the commutation relations (9)
read

[�3, �±] = ±�±, [�+, �−] = −2�3. (26)

It may be noted that if |jN〉 is a simultaneous eigenstate ofC and�3 then it is also an eigenstate
of the Hamiltonian H with eigenvalue −(j + 1

2 )
2. Following Sukumar [19] we now consider

the following representation of the generators:

�3 = −i
d

dφ

�± = exp(±iφ)

[
±h(x)

d

dx
± g(x) + f (x)�3 + c(x)

] (27)

where in order that �3 and �± satisfy the algebra (26) the functions h(x), g(x) and c(x) should
satisfy the equations

f 2(x) − h(x)
df (x)

dx
= 1, h(x)

dc(x)

dx
− c(x)f (x) = 0. (28)

The equations (28) can be easily integrated and their solutions are given by

f (x) = − tanh
∫ x

x0

dy

h(y)

c(x) = Asech
∫ x

x0

dy

h(y)

(29)

whereA and x0 are constants of integration. Then using (25) and (27) the Schrödinger equation
can be written as

Hψ =
[
−1

4
+ (f 2 − 1)�2

3 − h2 d2

dx2
−

(
h

dh

dx
+ 2gh − f h

)
d

dx

+

(
fg − g2 − h

dg

dx

)
+ (2cf �3 + c2)

]
ψ = −

(
j +

1

2

)2

ψ. (30)
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Now if we identify equations (5) and (30) then we obtain

h2(x) = 1

2m(x)
(31)

g(x) = 1

2

[
dh(x)

dx
+ f (x)

]
(32)

V (x) =
(
fg − g2 − h

dg

dx

)
+ (2cf �3 + c2) + (f 2 − 1)�2

3 . (33)

We now consider the mass to be the same as in (20). Then several potentials can be obtained
by suitably choosing the integration constant x0.

Case 1. Let us choose x0 = −∞. Then from (29), (31) and (32) we obtain

f (x) = −1 (34)

c(x) = A exp
[√

2(x + (α − 1) tan−1 x)
]

(35)

g(x) = 1√
2

(α − 1)x

(α + x2)2
− 1

2
. (36)

The potential can now be obtained from (33) and is given by

V (x) = N2
{
exp

[−2
(√

2t − t0
)] − 2 exp

[−(√
2t − t0

)]}
+

(α − 1)

2(α + x2)4
[3x4 + (4 − 2α)x2 − α] (37)

where t0 is a certain constant and we have used t = x + (α − 1) tan−1 x. The corresponding
energy spectrum can be found from (30) and is given by

En = −(n − N + 1
2 )

2, n = 0, 1, 2, . . . , n̄ � N − 1
2 . (38)

The potential in (37) exhibits the spectrum of the Morse potential. Now ifN is kept fixed andA
is allowed to vary then we obtain a family of potentials with the same eigenvalue (38). We
note that the potential in (37) is exactly the same as that obtained in [9] from a supersymmetric
consideration.

Case 2. Let us now choose x0 = 0. Again from (29), (31) and (32) we obtain

f (x) = − tanh
√

2[x + (α − 1) tan−1 x] (39)

c(x) = Asech
√

2[x + (α − 1) tan−1 x] (40)

g(x) = 1√
2

(α − 1)x

(α + x2)2
− 1

2
tanh

√
2[x + (α − 1) tan−1 x]. (41)

The potential in this case reads

V (x) = −(N2 − A2 − 1
4 )sech2(√2t

) − 2NAsech
(√

2t
)

tanh
(√

2t
)

+
(α − 1)

2(α + x2)4
[3x4 + (4 − 2α)x2 − α] (42)

and the corresponding spectrum is the same as that given before:

En = −(n − N + 1
2 )

2, n = 0, 1, 2, . . . , n̄ � N − 1
2 . (43)

Now for A = 0 we obtain from (42)

V (x) = −
(
N2 − 1

4

)
sech2(√2t

)
+

(α − 1)

2(α + x2)4
[3x4 + (4 − 2α)x2 − α] (44)

and the corresponding energy is the same as in (43). We note that for α = 1 the potential (44)
reduces to the well known soliton potential.
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4. Construction of isospectral Hamiltonians

In the case of the constant mass Schrödinger equation there are many methods of generating
isospectral Hamiltonians [20]. When the mass depends on the position one can use the
tools of supersymmetric quantum mechanics (SUSYQM) to construct a pair of isospectral
Hamiltonians with the same mass but different potentials [9]. In a recent paper [10] it was
shown that SUSYQM can still be used to construct isospectral Hamiltonians for which both
the mass and the potential are different. Here our aim is to study the same problem from the
point of view of Lie algebra. To be more specific we shall use the formalism of the previous
sections to construct isospectral Hamiltonians with different masses and potentials.

From the equations (17), (18), (32) and (33) it is clear that the final form of the potential
depends, apart from other factors, on the form of the mass. It is important to note that
irrespective of the potential the spectrum does not change if the mass is a well behaved function
of the space coordinate. This is an indication that isospectral Hamiltonians can be constructed
even when the mass and the potential are different. To illustrate this idea here we shall work
with a mass different from (20). As an example let us consider the mass to be of the form

m(x) =
(
α + x2

1 + x2

)4

. (45)

Now using (45) in (8) and (17) we find from (18)

V (x) = b

2

[
2x +

(α − 1)2x

x2 + 1
+ (α − 1)(α + 3) tan−1 x

]2

+ (α − 1)(1 + x2)2

[
3x4 + (7 − 5α)x2 − α

(α + x2)6

]

+ 2g2/

[
2x +

(α − 1)2x

x2 + 1
+ (α − 1)(α + 3) tan−1 x

]2

(46)

and the corresponding energy is the same as in (19):

En = 4
√
b
(
n + 1

2 + 1
2

√
1
4 + g2

)
. (47)

Thus the Schrödinger equations (5) with masses (20) and (45) and potentials (18) and (46)
respectively have the same spectrum. In other words it has been shown that two Schrödinger
equations with different masses and potentials possess the same spectrum. Note that if we take
g2 = 0 then we can obtain a potential which will exhibit the harmonic oscillator spectrum (23).

Let us now construct another example using su(1, 1) as a PA. Proceeding as in section 2
we find that for x0 = 0

V (x) = −(N2 − A2 − 1
4 )sech2(√2z

) − 2NAsech
(√

2z
)

tanh
(√

2z
)

+ (α − 1)(1 + x2)2

[
3x4 + (7 − 5α)x2 − α

(α + x2)6

]
(48)

where we have defined z = [x + (α − 1)2x/2(1 + x2) + [(α − 1)(α + 3)/2] tan−1 x]. The
potential in (48) has the spectrum

En = −(n − N + 1
2 )

2, n = 0, 1, 2, . . . , n̄ � N − 1
2 . (49)

Thus the potentials (42) and (48) are isospectral. It is therefore clear that we can obtain
isospectral potentials with different masses.
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5. Conclusion

In this article we have discussed application of the su(1, 1) algebra to Schrödinger equations
with an effective mass. In particular using the su(1, 1) algebraic methods we have obtained
the exact spectrum corresponding to a number of potentials. In this context we note that to
obtain the wavefunctions one has to consider the su(1, 1) algebra in the form [�3, �±] = ±�±,
[�+, �−] = −2�3. Then the wavefunctions ψn ∼ (�+)

nψ0 can be obtained from the ground
state ψ0 which satisfies the relation �−ψ0 = 0.

We note that some of the potentials obtained here were previously found using
supersymmetric methods while the others are new. In a sense therefore the present study
compliments [9, 10]. Another issue which we have considered here is the question of
isospectrality of different Schrödinger equations with different masses. It has also been
explicitly shown that two Schrödinger equations with different masses and potentials can
be exactly isospectral. The reason for this is that both the potentials (21) and (46) are su(1, 1)
symmetric. The same is true for the potentials (42) and (48) for which su(1, 1) is a PA.

Another interesting point to note is that effective mass Schrödinger equations are
particularly suitable for Lie algebraic treatment (at least for the set of generators considered
here). This is because the effective mass Schrödinger equations contain a first-derivative term
so they can be directly identified with one of the generators. On the other hand in the case
of the constant mass Schrödinger equation one has to perform a transformation on one of the
generators to eliminate the first-derivative term so that it can be identified with the Schrödinger
equation. In this context we note that it is possible to transform the effective mass Schrödinger
equation to a constant mass Schrödinger equation and that the latter equation may be solved
algebraically or otherwise. However in this case one cannot make sure that the symmetry of
the transformed equation is shared by the original equation also. In other words the symmetry
of the variable mass Schrödinger equation may not survive the transformation to a constant
mass equation. This is why we have considered the effective mass Schrödinger equation in its
original form (5). Finally we would like to mention that it would be interesting to search for
more general potentials following the methods of [21, 22].
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